Ratliff-rush Closure of Ideals in Integral Domains

نویسنده

  • A. MIMOUNI
چکیده

This paper studies the Ratliff-Rush closure of ideals in integral domains. By definition, the Ratliff-Rush closure of an ideal I of a domain R is the ideal given by Ĩ := S (I :R I ) and an ideal I is said to be a Ratliff-Rush ideal if Ĩ = I. We completely characterize integrally closed domains in which every ideal is a Ratliff-Rush ideal and we give a complete description of the Ratliff-Rush closure of an ideal in a valuation domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topics on the Ratliff-Rush Closure of an Ideal

Introduction Let  be a Noetherian ring with unity and    be a regular ideal of , that is,  contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. ‎  The Ratliff-Rush closure of  ‎ is defined by‎ . ‎ A regular ideal  for which ‎‎ is called Ratliff-Rush ideal.‎‏‎ ‎ The present paper, reviews some of the known prop...

متن کامل

Ratliff-rush and Integral Closure of Ideals in a Valuation and Prüfer Domains

This paper studies the Ratliff-Rush closure and the integral closure of an ideal in a valuation and Prüfer domains. By definition, the RatliffRush closure (respectively the integral closure) of an ideal I of a domain R is the ideal Given by Ĩ := S (I :R I ) (respectively I := {x ∈ R|x satisfies an equation of the form x + a1x + · · ·+ ak = 0, where ai ∈ I i for each i ∈ {1, . . . , k}}). An ide...

متن کامل

Ratliff-rush and Integral Closures of Ideals in a Valuation and Prüfer Domains

This paper studies the Ratliff-Rush closure and the integral closure of an ideal in a valuation and Prüfer domains. By definition, the RatliffRush closure (respectively the integral closure) of an ideal I of a domain R is the ideal given by Ĩ := S (I :R I ) (respectively I := {x ∈ R|x satisfies an equation of the form x + a1x + · · ·+ ak = 0, where ai ∈ I i for each i ∈ {1, . . . , k}}). An ide...

متن کامل

Se p 20 02 Notes on the behavior of the Ratliff - Rush filtration

We establish new classes of Ratliff-Rush closed ideals and some pathological behavior of the Ratliff-Rush closure. In particular, Ratliff-Rush closure does not behave well under passage modulo superficial elements, taking powers of ideals, associated primes, leading term ideals, and the minimal number of generators. In contrast, the reduction number of the Ratliff-Rush filtration behaves better...

متن کامل

A NEW PROOF OF THE PERSISTENCE PROPERTY FOR IDEALS IN DEDEKIND RINGS AND PR¨UFER DOMAINS

In this paper, by using elementary tools of commutative algebra,we prove the persistence property for two especial classes of rings. In fact, thispaper has two main sections. In the first main section, we let R be a Dedekindring and I be a proper ideal of R. We prove that if I1, . . . , In are non-zeroproper ideals of R, then Ass1(Ik11 . . . Iknn ) = Ass1(Ik11 ) [ · · · [ Ass1(Iknn )for all k1,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008